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A variety of sesquiterpene lactones (SLs) possess considerable anti-inflammatory activity. Several studies
have shown that they exert this effect in part by inhibiting the activation of the transcription factor NF-κB.
In the present study we elaborated on the investigation of a data set of 103 structurally diverse SLs for
which we had previously developed several different QSAR equations dependent on the skeletal type. Use
of 3D structure descriptors resulted in a single model for the entire data set. In particular, local radial
distribution functions (L-RDF) were used that centered on the methylene-carbonyl substructure believed
to be the site of attack of cysteine-38 of the p65/NF-κB subunit. The model was developed by using a
counterpropagation neural network (CPGNN), attesting to the power of this method for establishing structure-
activity-relationships. The investigations shed more light onto the influence of the chemical structure on
NF-κB inhibitory activity.

Introduction

Sesquiterpene lactones (SLs) are a large group of secondary
plant metabolites from which more than 4000 structures are
known mostly from the Asteraceae family.1 Numerous species
of this family are used in traditional medicine for the treatment
of inflammation, and SLs are described as their active constitu-
ents. The anti-inflammatory activity of SLs has been cor-
roborated using various assays, and several studies have
established that they exert their activity by inhibiting the
transcription factor NF-κB.2-5 Using helenalin and parthenolide
as models, we could provide evidence that DNA binding of
NF-κB is prevented by alkylation of cysteine-38 in the p65/
NF-κB subunit.2,6 There are strong indications that this is a
general mechanism for SLs, which possessR,â-unsaturated
carbonyl structures such asR-methylene-γ-lactones orR,â-
unsaturated cyclopentenones. These functional groups are known
to react with nucleophiles, especially with the sulfhydryl group
of cysteine, in a Michael-type addition.1

NF-κB is a central mediator of the human immune system
promoting the expression of over 400 target genes in re-
sponse to inflammatory stimulators such as cytokines as well
as genes encoding cell adhesion molecules and enzymes such
as COX-II and iNOS.7,8

Because of its central role in regulating inflammatory
responses, a pharmacological inhibition of NF-κB activation in
vivo could be beneficial in the treatment of inflammation.9-12

Therefore, searching for lead structures that can be optimized
for the development of a pharmaceutically used anti-inflam-
matory cytokine suppressing remedy is an interesting task.

Previously, we presented a QSAR study on the NF-κB DNA
binding activity of a great variety of structurally different SLs.13

Multiple linear regression analysis revealed that a strong
NF-κB inhibitory activity correlates with the number of alky-
lating centers, such as the methylene lactone and conjugated

carbonyl functions, but that topological and structure-coding
properties also contribute to the NF-κB inhibitory activity of
SLs possessing a rigid skeleton. Good correlations were only
obtained for individual subgroups of SLs and not for the entire
data set.

Here, we report on the development of a counterpropagation
neural network (CPGNN) model to predict the inhibitory
potency of unknown SLs using the same data set of 103 SLs as
in the previous QSAR study.13 These SLs represent six different
skeletal types with a wide structural diversity: 44 germacra-
nolides, 16 furanoheliangolides, 22 guaianolides, 9 pseudogua-
ianolides, 2 hypocretenolides, and 10 eudesmanolides.

Artificial neural networks (ANN) are defined as computa-
tional models having structures derived from the simplified
concept of the brain in which a number of nodes, called neurons,
are interconnected in a network-like structure.14 Kohonen
introduced an ANN, which he called self-organizing network15

and which projects objects from a multidimensional space into
a space of lower-dimensionality, usually into a 2D plane. In
this projection, the similarity relationship between objects is
conserved. Thus, in principle, Kohonen networks can be used
for clustering of objects. Whereas the training of these networks
is unsupervisedsi.e., the investigated property is not used during
the training processsthe Kohonen learning algorithm can also
be utilized for supervised learning. This results in counterpropa-
gation neuronal networks and can be used to model problems
and to predict properties of new objects.

Here, we generated CPGNN to improve the prediction of the
inhibitory potency of unknown SLs compared to the previous
QSAR study. CPGNN is a suitable option because of the
complex data set, the possibility of using high-dimensional data
sets, and the existence of noncontinuous values. We have
succeeded in modeling the entire data set as a whole in a single
model. This has been achieved by using values of 3D structure
representations as descriptors. This global model provides more
detailed information on the structural influence of the biological
activity than the previous QSAR studies. This structural model
can contribute to the search and optimization of lead structures
for the development of therapeutically used cytokine suppressing
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remedies valuable for the treatment of various inflammatory
diseases.

Results and Discussion

Generation of a Counterpropagation Neural Network.To
generate a CPGNN for the prediction of the NF-κB inhibitory
potency of unknown SLs, the data set of 103 SLs and the re-
sulting micromolar concentrations (5, 10, 12.5, 20, 25, 50, 100,
200, or 300µM) that completely inhibit NF-κB DNA binding
and that are described as IC100 values were used. We embarked
on the following strategy that is summarized in Figure 1. The
vectors were reduced from 128 to between 7 and 12 descriptors
of the radial distribution function (RDF) or autocorrelation
coefficient (AC) (Table 1) as described in the Experimental
Section. These reduced vectors were used for input as descriptors
of a molecule. Abbreviations of the atomic properties indicate
which property had been encoded into the RDF vector. In a
similar manner, the abbreviations HBP (hydrogen-bonding
potential) and MEP (molecular electrostatic potential) indicate
the surface properties that were encoded into the AC vector
(Tables 1-3). Eight of the 15 RDF-coded atom properties show
a clustering with less than 13 conflicts and an occupancy of
more than 75%. From the surface properties, only the HBP
surface exhibits any clustering. Different activities could be
distinguished by a few entries of the local radial distribution
function (L-RDF) vectors usingπ-electronegativity,øπ, values.

To study different properties of the SLs that could contribute
to the inhibitory activity, up to four different properties were
combined. This was done in such a way that two of the best
eight RDF-coded atom properties (Table 1) were combined with
each other, resulting in 28 combinations from which three
exhibited a good clustering (conflicts less than 9, occupancy
more than 79%). These three combinations were effective
polarizability (Rd) andπ-electronegativity (øπ), π-electronega-
tivity (øπ) andσ-electronegativity (øσ), andπ-electronegativity
(øπ) and the number of neighbor atoms (nneighbor). Subsequently,
the best eight RDF-coded atom properties and all 28 combina-
tions were combined with the AC-encoded surface of the
hydrogen-bonding potential. Only three show good clustering
(conflicts less than 9, occupancy more than 79%):nel + øπ +
HBP, øπ + HBP, øπ + nneighbor + HBP. Finally, the L-RDF
encodedøπ properties were combined with the six good
clustered combinations mentioned above, resulting in one
combination with good clustering:øπ + HBP + øπ(L-RDF).

The resulting seven best combinations were characterized by
clustering, conflicts, and occupancy. The modeløπ + HBP +
øπ(L-RDF) is the only one that belongs to the three best ones

in all quality categories (Table 2). The exact composition of
this model is given in Table 3. An example of a CPGNN-output
map is given in Figure 2. The SLs with the highest inhibitory
activity (activity classes 1 and 2) build an almost quadratic
cluster that is well separated into all other activities. A similar
behavior could be observed for the middle active substances
(activity classes 3 and 4), whereas low active SLs (activity
classes 5 and 6) build a small tapelike cluster. Interestingly,
empty neurons predominate between the cluster of high activity
and low activity SLs, indicating a good separation of these
activity classes despite their neighborhood in the output map.

Evaluation of the Best CPGNN.The internal validation by
10-fold cross-validation (CV) revealed that a correct prediction
of the NF-κB inhibitory activity was possible to 80.6% (Table
4). However, overfitting is a main risk by any kind of model
building, especially if a high number of descriptors is associated
with a low number of molecules. Whereas the ratio is sufficient
in our best model (19 descriptors to 103 molecules), it has to
be considered that the 19 descriptors were chosen from a large
number of possible descriptors. Therefore, validation with an
external data set that was not used during selection and training
was carried out. External validation with 14 new SLs resulted
in a correct prediction of 78.6%. This means that the NF-κB
inhibitory activity for 11 of the 14 SLs was correctly predicted
(see Table 5).

Performing a 10-fold CV with all 117 SLs (103 and the 14
new SLs) gave a correct prediction of 77.8%. Altogether, similar
values of correct prediction were obtained using these three data
sets, indicating that the best created model is not an artifact
and covers a wide area of SLs structures.

Considering the quality criteria “clustering” and “conflicts”,
our best model shows outliers. Both types of outliers that will
be discussed in the following can be depicted from Figure 3.

Outliers of clustering represent SLs that form islands of
another activity class in a cluster. Because a resulting Kohonen
map depends on the initializing of the network, four different
random-initialized CPGNN models were used.

Interestingly, no SL is isolated in all networks. Only one SL
(83) is isolated in 3 of 4 CPGNNs; all the other ones are isolated
only in 2 (six SLs) or 1 (seven SLs) of 4 CPGNNs (Table 5).
Thus, the best model enables good clustering without excluding
any SL. In addition, isolation results only in a wrong prediction
for six SLs, whereas four of them are also involved in conflict
neurons. Furthermore, outliers occur looking at the quality
criteria “conflicts”. As mentioned above, a conflict occurs if
SLs with different activity classes are within the same neuron.
One (or more) of these SLs can be regarded as outliers: one is
an outlier if it has an activity class differing from those in the
neighborhood (Figure 3). Considering this definition, seven SLs
can be regarded as outliers (Table 5). By exclusion of these
outliers,16,17 validation of the remaining data set of 96 SLs
showed an increased correct prediction of 88.5% by a 10-fold
CV. These outliers may be SLs that have structural features
that are not yet considered or that differ in their modes of action
compared with the other ones.

Nevertheless, the original data set of 103 SLs was retained
unchanged to cover a wide range of structures including
structures that are not yet correctly predictable with this model.
Unknown substances whose activity is predicted by being
mapped into neurons containing outliers may be regarded as
not predictable. Thus, the risk to predict incorrect inhibitory
activities can be avoided.

Because the best model will be used in the future to search
and develop lead structures with a strong inhibitory activity on

Figure 1. Strategy for creating the best counterpropagation neural
network (CPGNN).
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NF-κB DNA binding, a good prediction is especially interesting
for the activity classes 1 and 2 (Table 4). Our model allows the
correct prediction of 31 from 37 SLs (84%) belonging to the
activity class 1 or 2 containing the higher active components.
Only 4 out of the 66 SLs (6%) from the lower activity classes
(classes 3-6) are wrongly assigned to activity class 1 or 2. From
these results it can be concluded that our model is a valu-
able tool for the screening of lead structures possessing potent
NF-κB inhibitory activity.

Previously, a similar number of wrongly predicted SLs was
obtained when carrying out classical QSAR studies with the
same data set.13 However, the data set had to be divided into
five subgroups according to the carbon skeletons. Here, only
one CPGNN describes the whole data set uniformly. This attests
to the global validity of the model developed here, having
discovered descriptors that can describe the structures of
different carbon skeletons. In contrast to the former QSAR study,
descriptors based on the RDF-encoded atomic properties and
the AC-encoded surfaces have been used here. These descriptors
are based on a 3D structure representation giving much more
detailed information on the structural influence on biological
activity, in our case of the NF-κB DNA binding inhibitory
activity. In addition, this study also emphasizes the advantage
of using counterpropagation neural network compared to
classical QSAR studies. Thus, CPGNN is a very suitable tool

for the prediction of the NF-κB DNA inhibitory activity and
for the search for lead structures.

Structural Information of the Used Descriptors for the
NF-κB Inhibitory Activity. The best model is obtained by a
combination oføπ + HBP + øπ(L-RDF). The exact composi-
tion is given in Table 3. These descriptors can provide us
with information about which structural features influence the

Table 1. List of the Atom Properties and Surfaces Useda

symbol abbreviation used by PETRA description dimensionality after reduction

qformal FORMCH formal charge of atoms 10b

nel NEL number of electrons 10b

aperipher PERIPH atom is peripheral or not 12b

Rd POLARIZ effective atom polarizability 10b

nringsize RINGSIZ size of the smallest ring the atom belongs to 9b

øLP ENLP lone pair electronegativity 10b

øπ ENPI π-electronegativity 8b

øσ ENSIG δ-electronegativity 9b

nfree-el FREEEL number of free electrons 10b

aLPstab LPSTAB mesomeric stabilization by lone pairs 10b

nneighbor NEIGHBOR number of neighbor atoms 7b

nnon-H-neighbor NONHNEIG number of non-hydrogen neighbor atoms 7b

qπ QPI π-charge 11b

qσ QSIG δ-charge 10b

qtot QTOT total charge 10b

MEP MEP surface of the molecular electrostatic potential 9c

HBP HBP surface of the hydrogen binding potential 9c

a The atom properties were calculated by PETRA. The surfaces were generated using SURFACE. The bold-faced properties show a clustering with a low
number of conflicts and a sufficient occupancy.b RDF encoded.c AC-encoded.

Table 2. Data That Characterize the Best Combinations Using the
Kohonen Neural Networka

clustering

combination correct drawn wrong occupancy conflicts

Rd + øπ 72.75 11.50 18.75 74.25 4.75
øπ + øσ 71.25 11.75 20.00 73.00 7.25
øπ + nneighbor 68.75 12.75 21.50 76.75 5.50
nel + øπ + HBP 73.75 9.25 20.00 73.25 6.50
øπ + HBP 73.50 9.75 19.75 75.50 5.25
øπ + nneighbor+ HBP 72.25 10.75 20.00 73.75 4.50
øπ + HBP + øπ(L-RDF) 77.25 9.00 16.75 74.50 5.00

a The values are the average of four trainings. The three best values of
each category are in bold.

Table 3. Descriptors of the Best Model Using CPGNN

property
encoded

by
number of
descriptors distance (Å)

øπ RDF 8 1.4, 1.6, 2.6, 3.5, 4.6, 5.1, 5.9, 6.6
HBP AC 9 4.4, 6.9, 7.1, 7.3, 7.7, 8.2, 8.6, 8.9, 10.3
øπ L-RDF 2 1.5, 4.5

Figure 2. Output map of a toroidal CPGNN with a one-dimensional
output layer of the best modeløπ + HBP+ øπ(L-RDF). High inhibitory
activity for activity classes 1 and 2 is in red, that for activity classes 3
and 4 is in orange, and that for activity classes 5 and 6 is in yellow.
The white areas indicate empty neurons. To illustrate the clustering of
the different classes, four toroidal maps were arranged like tiles to
indicate the closed nature of a toroidal surface.

Table 4. Confusion Matrix Based on a 10-Fold Cross-Validation of the
Best Modeløπ + HBP + øπ(L-RDF) Using CPGNNa

exptl activity classpredicted
activity class 1 2 3 4 5 6

nfalseof the
predicted

activity class

1 5 8 1 0 1 0 2
2 7 9 7 2 0 0 2
3 1 2 4 4 1 3 5
4 0 2 5 12 1 4 6
5 2 0 0 1 3 4 2
6 0 1 0 2 6 5 3

nfalseof the exptl
activity class

3 3 1 4 2 7 20

a nfalse is the number of wrongly predicted SLs.
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NF-κB inhibitory activity. Interestingly, our investigation
strengthens the importance of theπ-electronegativity; the atom
propertyøπ is included in the best model encoded by both RDF
and L-RDF (Table 3). Only atoms withπ-electrons, such as

atoms in multiple bonds and atoms with free electron pairs that
are in conjugation with multiple bonds, obtainøπ-values different
from zero. These atoms representingR,â-unsaturated carbonyl
structures such as theR-methylene-γ-lactone moiety are mainly
involved in the proposed reaction with cysteine-38 of the p65
subunit (Figure 4). Therefore, the exocyclic carbon atom was
defined as the central atom by encoding with L-RDF. But not
all distances of the RDF or L-RDF curves are important;
therefore, only few were selected (Table 3) by a statisticalt-test.
Considering all selected distances, those with high values
correlate with a high inhibitory activity.

The short distance of 1.5 Å of the L-RDF encodedøπ exactly
correlates with the atom distances between the exocyclic carbon
atom and the neighboring carbon atom of the lactone ring. This
emphasizes the importance of theR-methylene-γ-lactone struc-
ture for the reaction with cysteine. Including similar distances
(1.4 and 1.6 Å) of the RDF-encodedøπ revealed that otherR,â-
unsaturated carbonyl structures are also necessary for high
reactivity. Analogously, distances of 2.6 Å (RDF-encoded) can
be discussed. As mentioned above, high values of these
descriptors correlate with a high inhibitory activity, as shown
in Figure 5. Obviously, when only this single descriptor is used,
an almost complete differentiation between SLs of activity
classes 1+ 2 and 3-6 is possible. The atom distance ofr )
2.6 Å is of particular significance inR,â-unsaturated carbonyl
structures (Figure 6a). Thus, the value of this descriptor
correlates with the number of such structural elements. The more
suchR,â-unsaturated carbonyl units are present in a molecule,

Table 5. Wrongly Predicted SLs and Outliers Regarding Quality
Criterias “Conflicts” and “Clustering”a

no. of wrongly
predicted SLs
by validation

no.
of SLs

exptl
activity
class

predicted
activity
class

predicted
by SL

conflicts:
no. of SLs
involved

in conflict
neurons

clustering:
rate of wrong

clustering
using four

CPGNNs (%)

5# 2 6 82 82 50
82* 6 - - 5 -
92 4 6 82 - -
19* 4 2 20 20 -
20 2 4 19 19 -
23 4 6 79 79 -
79 6 4 23 23 -
25* ,# 3 - - 85/100 25
85 6 3 25 25 -
36 4 2 38 38 -
38* 2 4 36 36/100 -
100 6 4 36 25/38/102 -
102* 4 - - 100 -
33# 4 - - - 25
34# 3 - - - 25
37 4 - - 65 -
65* ,# 1 5 103 37 25
103# 5 1 65 - 50
39# 3 - - - 25
43 6 4 37 - -
45# 4 6 46 46 25
46# 6 4 45 45 25
47# 6 3 88 - 50
48 1 - - 49/58 -
49* 3 1 58 48/58 -
58 1 3 49 49 -
53 1 5 91 - -
71# 1 - - - 50
72# 2 - - - 50
83# 2 - - - 75
87# 3 - - - 50
93 5 3 76 - -
N2 1 3 88
N4 3 6 47
N8 2 6 43

a SLs that are within the same neuron and/or predict each other are
grouped together. SLs marked with “/” are conflict outliers. Those marked
with “#” are outliers of clustering. In column 3, the wrongly predicted
activity class by 10-fold CV is shown. In column 4, the SLs that are in the
same neuron are specified. Clustering outliers with the rate of occurrence
regarding four CPGNNs are in column 5. A dash in a column indicates
that the corresponding SL is not wrongly predicted and/or not an outlier.

Figure 3. Output map of the best model demonstrating the two types
of outliers. High inhibitory activity (activity classes 1 and 2) is in dark-
gray, that for activity classes 3 and 4 is in gray, and that for activity
classes 5 and 6 is in light-gray. The white areas indicate empty neurons.
The isolated neuron is surrounded by other activities. The SL attached
to this neuron is defined as an outlier of clustering. Two SLs are found
within the conflict neuron:19 (activity class 4) and20 (activity class
2). Because the surrounded neurons are predominated by activity classes
1 and 2 (dark-gray), SL19 is regarded as an outlier.

Figure 4. Reaction mechanism for the addition of the sulfhydryl group
of cysteine to theR-methylene-γ-lactone groups of an SL.

Figure 5. Distribution of the normalized RDF-encoded property ENPI
(øπ) at an atom distance of 2.6 Å within the inhibitory activity classes
1-6. Each rhomboid symbolizes one molecule. On the basis of an RDF
value of 0.65, an almost complete differentiation between SLs of activity
classes 1+ 2 and 3-6 is possible. Right separated SLs are framed by
continuous lines, and false separated are framed by dashed lines. Only
9 of 37 SLs (24%) of activity classes 1+ 2 and only 3 of 66 SLs (5%)
of activity classes 3-6 would be false-classified using only this single
descriptor.
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the higher is the activity. The significance of such elements
was already shown.13,18

The distance of 3.5 Å is found within theR-methylene-γ-
lactone as well as withinR,â-unsaturated carbonyl structures
that are part of a ring system (Figure 6b). Consequently, the
importance of such structure elements that occur within the ring
system and not within acyl moieties, such as methacryloyl
moieties, is emphasized.19 The intermediate distances of 4.6 Å
(RDF-encoded) and 4.5 Å (L-RDF encoded) contain information
on the neighborhood ofR,â-unsaturated carbonyl structures.
Thus, the L-RDF encodedøπ at a distance of 4.5 Å gives
information on the occurrence of hydroxy, carboxy, and ester
groups adjacent to the exomethylene group (Figure 6c). The
existence of these groups results in an increased inhibitory
activity that agrees with previous QSAR investigations.13,18

The long distances of 5.1, 5.9, and 6.6 Å describe the
positions of differentR,â-unsaturated carbonyl structures relative
to each other (Figure 6d).

Nine distances between 4.4 and 10.3 Å from the AC-encoded
HBP were included in the best model. In the calculation of the
hydrogen-bonding potential, the functional groups were divided
into proton donors and proton acceptors and mapped onto a
surface. A correlation between the atom distances of the atom
propertyøπ and the distances of the surface points of HBP could
not be found. However, in contrast to the descriptors resulting
from øπ, high values of HBP descriptors do not always correlate
with high inhibitory activity. HBP descriptors probably describe
the possibility of docking at the p65 subunit. Interestingly, SLs

of activity classes 5 and 6 show AC values of HBP of about
zero at a surface point distance ofr ) 10.3 Å, whereas SLs of
activity class 1 exhibit values between 0.2 and 0.5, indicating
that active SLs surface areas with a hydrogen-bonding potential
have to be on the opposite side of the molecule to reach a
distance of 10.3 Å.

Conclusions

Altogether, we show that the best generated CPGNN model
is a valuable tool for the prediction of the NF-κB inhibitory
activity of new SLs. In contrast to our previous study, only a
single model based on a CPGNN was needed to describe the
entire data set. The 19 descriptors used in our best model
confirm the importance ofR,â-unsaturated carbonyl structures
for the NF-κB inhibitory activity. Moreover, by use of the 3D
structure representation, the descriptors provide us with further,
more detailed information on the structural features necessary
for high inhibitory activity. Thus, our best CPGNN model can
be used for the screening of structure databases for lead
structures. Furthermore, the clear-cut structure interpretation of
our model allows the de novo construction of new sesquiterpene
lead structures.

Experimental Section

Data Set.The 103 SLs are listed in Table 6, and the structures
are shown in Figure 7. The biological activity of SLs is expressed
as the concentration inµM that totally blocks DNA binding of the
transcription factor NF-κB in the electrophoretic mobility shift assay
(EMSA), here called IC100. Because of the experimental procedure,
IC100 values of 5, 10, 12.5, 20, 25, 50, 100, 200, 300µM can be
assigned. To get better clustering, it was necessary to reduce the
number of activity classes and to combine compounds with similar
activity. This division gave classes with nearly the same number
of SLs. For the training of neural networks (NN) and the prediction
of the activities, the IC100 values were expressed for classes 1-6
(class 1, IC100 ) 5 µM; class 2, IC100 ) 10 and 12.5µM; class 3,
IC100 ) 20 and 25µM; class 4, IC100 ) 50 µM; class 5, IC100 )
100µM; class 6, IC100 ) 200 and 300µM). The origin of the SLs
and their inhibitory activity are summarized in Siedle et al.13

An external test set of 14 SLs was used for validation. This set
represents results of recent investigations and is listed in Table 7.
The corresponding structures are presented in Figure 8.

Study of the NF-κB DNA Inhibitory Activity in an Electro-
phoretic Mobility Shift Assay. Jurkat T-cells were incubated for
1 h and subsequently stimulated with TNF-R for 1 h. Total protein
extracts were prepared and analyzed for NF-κB binding activity in
an EMSA. All experiments were reproduced at least once. Further
experimental information is given in Siedle et al.13

Structure Representations.ANN vectorial representations of
the objects need to be studied with a fixed number of entries. This
was achieved in the following way.

The 3D structure generator CORINA24-26 was used to generate
single low-energy 3D conformations. SLs only exhibit few low-
energy conformations. Moreover, the most important structural
featuresthe lactone ringsis always rather rigid. This encouraged
us to go ahead with a single conformation only for each compound.
Next, the atoms of a molecule were characterized by various
physicochemical properties. All atomic properties used in this work
(see Table 1) were calculated by PETRA (parameter estimation
for the treatment of reactivity applications).26,27 This program
package comprises various empirical methods for the calculation
of a wide panel of atomic and other physicochemical properties in
organic molecules. In particular, the following properties were
used: theσ-chargeqσ,28 theπ-chargeqπ,29 the polarizabilityRd,30

and theπ-electronegativityøπ.31 To obtain a vectorial representation
with a fixed number of entries, irrespective of the number of atoms
in a molecule, a mathematical transformation of the atomic prop-
erties is required. This was achieved by using the radial distribution

Figure 6. SL 50 (left) and SL75 (right) with atom distances showing
RDF or L-RDF values different from zero. Row a shows atom distances
of r ) 2.6 Å and row b ofr ) 3.5 Å of the RDF-coded propertyøπ.
Row c shows atom distances ofr ) 4.5 Å of L-RDF coded property
øπ with the exocyclic C atom of the lactone ring as the central atom.
Row d shows the atom distances ofr ) 5.9 Å of the RDF-coded
propertyøπ. For better illustration, the 3D structures of the SLs50 and
75 are shown in row e.

Model for NF-κB Inhibition Journal of Medicinal Chemistry, 2006, Vol. 49, No. 72245



Table 6. List of the Investigated SLs and Their Inhibitory Activity (IC100) in the NF-κB DNA Binding Assaya

compd name IC100 (µM)

I. Germacranolides without Furanoheliangolides
1 2R-acetoxy-15-isovaleroylmiguanin+ 2R-acetoxy-15-(2-methylbutyryl)miguanin 12.5
2 15-isobutyrylmiguanin 12.5
3 15-isovaleroylmiguanin+ 15-(2-methylbutyryl)miguanin 12.5
4 9R,14-dihydroxy-15-isobutyryloxycostunolide 100
5 14-hydroxy-15-isovaleroyloxy-9-oxomelampolide+

14-hydroxy-15-(2-methylbutyryloxy)-9-oxomelampolide
12.5

6 1R-methoxy-15-isobutyryloxy-9-oxogermacra-4e,10(14),11(13)-trien-12,6R-olide 25
7 1â-methoxy-15-isobutyryloxy-9-oxogermacra-4e,10(14),11(13)-trien-12,6R-olide 25
8 1â-methoxy-15-isovaleroyloxy-9-oxogermacra-4e,10(14),11(13)-trien-12,6R-olide +

1â-methoxy-15-(2-methylbutyryloxy)-9-oxogermacra-4e,10(14),11(13)-trien-12,6R-olide
12.5

9 8â-hydroxy-9R-methacryloyloxy-14-oxoacanthospermolide 5
10 9R-hydroxy-8â-methacryloyloxy-14-oxoacanthospermolide 10
11 15-acetoxy-9R-methacryloyloxy-8â-hydroxy-14-oxoacanthospermolide 5
12 15-acetoxy-9R-hydroxy-8â-methacryloyloxy-14-oxoacanthospermolide 5
13 9R-hydroxy-8â-methacryloyloxy-14-oxoacanthospermolid-4R,5â-epoxide 10
14 miller-9e-enolide 5
15 miller-9z-enolide 10
16 1â-methoxy-miller-9z-enolide 10
17 4â,15-epoxy-miller-9e-enolide 5
18 4â,15-epoxy-miller-9z-enolide 5
19 9R-methoxy-miller-1(10)z-enolide 50
20 9R-acetoxy-miller-1(10)z-enolide 10
21 9R-acetoxy-4â,15-epoxy-miller-1(10)z-enolide 5
22 tatridin A 200
23 1-epitatridin B 50
24 tamirin 50
25 parthenolide 20
26 15-(2′,3′-epoxy)isobutyryloxymicrantholide 50
27 15-isobutyryloxymicrantholide 50
28 15-(2′-methyl-3′-hydroxy)butyryloxymicrantholide 50
29 15-(2′-hydroxy)isobutyryloxymicrantholide 50
30 14-acetoxy-15-(3′-hydroxy)methacryloyloxymicrantholide 50
31 15-(2′-methyl)butyryloxymicrantholide 50
32 15-(3′-hydroxy)isobutyryloxymicrantholide 100
33 15-methacryloyloxymicrantholide 50
34 15-(4-hydroxy)methacryloyloxymicrantholide 20
35 11â,13-dihydro-14-oxo-15-hydroxygermacra-1(10)e,4z-dien-12,8R-olide 300
36 costunolide 50
37 3-acetoxycostunolide 50
38 7-hydroxycostunolide 10
39 eupatoriopikrin 20
40 enhydrine 10
41 molephantin 10
42 molephantinin 10
43 9â-acetoxycostunolide 200
44 scandenolide 10

II. Furanoheliangolides
45 diversifolin 50
46 diversifolin methyl ether 200
47 tirotundin 200
48 centratherin 5
49 goiazensolide 20
50 isogoiazensolide 10
51 1-oxo-5-chlor-3,10-epoxy-8-methacryloyloxy-germacra-2,4(15),11(13)-trien-12,6R-olide 5
52 15-hydroxy-eremantholide B 100
53 15-acetoxy-eremantholide B 5
54 15-deoxybudlein A 5
55 atripliciolidtiglate 5
56 3,10-hydroxy-2-methoxy-8-(2-methylpropanoyloxy)germacra-4,11(13)-dien-12,6R-olide 200
57 15-deoxygoiazensolide 10
58 budlein A 5
59 2â-methoxy-2-deethoxyphantomolin 10
60 2â-methoxy-2-deethoxy-8-O-deacylphantomolin-8-O-tiglinate 10

III. Guaianolides
61 cumambrin A 20
62 cumambrin B 100
63 dehydroleucodin 50
64 3-chlorodehydroleucodin 20
65 3,4-epoxydehydroleucodin 5
66 2-oxoguaia-1(5),11(13)-dien-12,8â-olide 20
67 2-oxoguaia-1(5),11(13)-dien-12,8R-olide 20
68 thieleanin 20
69 3-oxoguaia-4,11(13)-dien-12,8â-olide 50
70 2-oxoguaia-1(5),11(13)-dien-12,6â-olide 20
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function (RDF) code (eq 1) as obtained with the program RCODE.32

A slightly simplified interpretation of the radial distribution function
for an ensemble of atoms is a kind of probability distribution of
the individual interatomic distancesr:

whererij represents the distance between atomsi and j, N is the
number of atoms in a molecule,pi and pj are atomic properties
associated with the atomsi andj, respectively, andB is a smoothing
factor.33,34

Furthermore, an RDF-like function was used for encoding atomic
properties called local RDF (L-RDF, eq 2) calculated with the
program ARDF:35

Similar to the RDF code, the L-RDF can be interpreted as a
probability distribution to find an atom in a spherical shell around
one (the central) atom c. The exocyclic carbon atom of the lactone
ring was selected as the central atom because it is involved in
alkylating p65/NF-κB in a Michael-type addition.18 In effect, we
selected this exocyclic carbon atom as the reaction site and analyzed
how its reactivity is influenced by other atoms whereby this
influence is considered as distance-dependent. Furthermore, we
investigated different atomic properties that are expected to
influence this reactivity.

The SURFACE program26,36 was used to generate vectors of
autocorrelation coefficients37 (AC, eq 3) of different molecular
surface properties: the molecular electrostatic potential (MEP) and
the hydrogen-bonding potential (HBP).

In eq 3 between the boundariesdl (lower) and du (upper) the
products of propertyp for surface pointsi andj having a Euclidian
distanced within this interval were summarized.

All representations (RDF, L-RDF, and AC) are uniform and
invariant under translations and rotations of molecules. The
functions are given as vectors calculated with a sampling rate of
0.1 Å. The dimension was set to 128,g(r), f(r), and A(r) were
defined in the interval 0.0-12.8 Å.

For a clear understanding, the following definitions are estab-
lished. Each value within the vector is called descriptor, whereas
the atomic property or molecular surface property that results in a
vector is called property. The symbols and abbreviations of the
atomic properties that have been encoded into RDF vectors are
given in Table 1. In a similar fashion, the abbreviation HBP or
MEP indicates which surface properties were encoded into the AC
(see Tables 1-3).

Reduction of the Number of Descriptors and Preprocessing.
Two data sets were obtained from each atom property using RDF
and L-RDF codes, and one data set was obtained for each molecular
surface property. From these initial data sets, descriptors with

Table 6 (Continued)

compd name IC100 (µM)

III. Guaianolides (Continued)
71 2-oxoguaia-1,4(15), 11(13)-trien-12,8â-olide 5
72 2-oxoguaia-1,4,11(13)-trien-12,8R-olide 10
73 3-oxoguaia-1(2),11(13)-dien-12,8R-olide 50
74 2-oxoguaia-1(5),11(13)-dien-12,6R-olide 20
75 2-oxo-8â-methacryloyloxyguaia-1(10),3,11(13)-trien-12,6R-olide 10
76 2-oxo-8â-epoxyangelicoyloxyguaia-1(10),3,11(13)-trien-12,6R-olide 20
77 2-oxo-8â-methacryloyloxy-10â-hydroxyguaia-3,11 (13)-dien-12,6R-olide 50
78 2-oxo-8â-methacryloyloxy-10R-hydroxyguaia-3,11 (13)-dien-12,6R-olide 20
79 3â,10R-dihydoxyguaia-4(15),11(13)-dien-12,6R-olide 200
80 2-oxo-15-hydroxyguaia-1(10),3,11(13)-trien-12,6R-olide 50
81 3â-acetoxyguaia-4(15),10(14),11(13)-trien-12,6R-olide 100
82 3â-senecioyloxyguaia-4(15),10(14),11(13)-trien-12,6R-olide 200

IV. Pseudoguaianolides
83 helenalin 10
84 11R,13-dihydrohelenalin 200
85 chamissonolide 200
86 2,3-dihydroaromaticin 50
87 mexicanin I 20
88 helenalinisobutyrate 20
89 11R,13-dihydrohelenalinacetate 200
90 11R,13-dihydrohelenalintiglinate 100
91 11R,13-dihydrohelenalinmethacrylate 100

V. Hypocretenolides
92 14-hydroxycretenolide 50
93 14-acetoxycretenolide 100

VI. Eudesmanolides
94 douglanin 300
95 santamarin 100
96 ludovicin A 200
97 3R-hydroxyreynosin 200
98 ludovicin B 100
99 1â-hydroxy-4R-hydroxy-15-isobutyryloxyeudesma-11(13)-en-12,8â-olide 200
100 1â-hydroxy-4â-hydroxy-15-isobutyryloxyeudesma-11(13)-en-12,8â-olide 200
101 1â-acetoxy-4R-hydroxy-15-isobutyryloxyeudesma-11(13)-en-12,8â-olide 100
102 1â-hydroxy-15-isobutyryloxyeudesma-3,11(13)-dien-12,8â-olide 50
103 2-oxo-3-acetoxyeudesma-3,11(13)-dien-12,8â-olide 100

a Further information concerning the origin is given in Siedle et al.13

g(r) ) ∑
i)1

N-1
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N
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N
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Figure 7. (Continued on next page)
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constant values for all molecules were excluded. Subsequently, for
each data set the mean values and standard deviations of the
descriptor values of each activity class were calculated and

compared using a statisticalt-test. Only those descriptors were
selected by which the individual classes of the NF-κB inhibitory
activity could be partially differentiated. This was possible by a

Figure 7. Structures of the investigated sesquiterpene lactones representing six structural classes: germacranolides (1-44), furanoheliangolides
(45-60), guaianolides (61-82), pseudoguaianolides (83-91), hypocretenolides (92 and93), and eudesmanolides (94-103).
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t-value of more than 2 as controlled by a graphical comparison of
descriptors with differentt-values. The selected descriptors of each
data set were combined into a new data set. Thus, a reduction from
128 descriptors to between 7 and 12 was achieved for each data
set (Table 1).

All descriptors of the reduced vectors were normalized between
zero and 1 using a range scaling procedure:

The original distribution is thereby maintained.16

Generation of a Self-Organizing Network. The software
SONNIA (self-organizing neural network for information analysis)38

was used to generate the Kohonen networks and the CPGNN.
Both ANNs consist of then-dimensional input layer, withn

descriptors resulting from RDF, L-RDF, or AC encoding. In
addition, CPGNNs also have an output layer with the NF-κB
inhibitory activity expressed as classes between 1 and 6. Thereby,
the activity is encoded by natural numbers from 1 to 6 in one layer
or in a binary code using one output layer for each activity class
(Figure 9).14,15,39

At first, Kohonen networks were used to search for atomic
properties important for the inhibitory activity of the SLs. Training
of the Kohonen network started with the presentation of a vector
(a molecule) of input variables to all neurons. The neuron that has
weights being closest to the input variables is selected as the
winning neuron in the learning algorithm. To improve the response
to the same input in the next epoch, the weights of the so-called
winning neuron are adjusted to the input vector as well as the
weights of neurons in the neighborhood. The degree of adaptation
decreases with increasing distance to the winning neuron. This

adaptation is repeated for each vector of an input molecule. After
training, the response of the network is calculated for each vector
of the data set. Subsequently, the projection of the data set into the
two-dimensional space is performed by mapping the activity of each
vector into the coordinates of its winning neuron. Additionally, the
CPGNN were used for validation and prediction. During training
of CPGNN the weights of both input and output layers are adapted,
but only the input layers are used to determine the winning neuron.
The results are visualized as two-dimensional maps by looking at
the output layers and identifying each molecule by its class
assignment.

Table 7. List of the SLs of the External Test Set, Their Inhibitory Activity (IC100 ) in the NF-κB DNA Binding Assay, and Their Origin

compd name IC100 (µM) origin

N1 2â-ethoxy-2,3-dihydrohelenalin-6-O-acetate 50 20
N2 helenalin-2-methylbutyrate 10 20
N3 helenalinmethacrylate 5 20
N4 niveusin A 20 21
N5 2â-hydroxy-1-desoxyniveusin A 50 21
N6 niveusin B 20 21
N7 4,5-isobudlein A 10 21
N8 8R-(2′R,3′R-epoxy-2′-methylbutyryloxy)-4R-hydroxy-9-oxo-5âH-eudesm-1Z,11(13),dien-6â,12-olide 10 22
N9 8R-(2′R,3′R-epoxy-2′-methylbutyryloxy)-9R-hydroxymontahibisciolide 200 22
N10 9â-(2′S,3′S-epoxy-2′-methylbutyryloxy)-8R-hydroxy-germacra-4E,1(10)E-dien-6â,12-olide 50 22
N11 8R-(2′S,3′S-epoxy-2′-methylbutyryloxy)-9-oxo-germacra-4E,1(10)E-dien-6â,12-olide 50 22
N12 8R-(2′S,3′S-epoxy-2′-methylbutyryloxy)-1R-methoxy-9-oxo-10RH-germacra-4E-en-6â,12-olide 20 22
N13 8R-hydroxy-9â-tigloyloxy-germacra-4E,1(10)E-dien-6â,12-olide 100 22
N14 dehydrosaussurealactone 100 23

Figure 8. Structures of the SLs of the external test set representing six structural classes: pseudoguainolides (N1-N3), furanoheliangolides (N4-
N7), eudesmanolides (N8), montahibisciolides (N9), germacranolides (N10-N13), and elemanolides (N14).

xnew,i )
xi - min(x)

max(x) - min(x)
(4)

Figure 9. Architecture of the used neural networks and the associated
vectors. Whereas the Kohonen network consists only of an input layer,
counterpropagation networks also have an output layer. The output layer
contains the information on the activity that is classified into six activity
classes. By use of a one-dimensional output layer, the activity is encoded
as a natural number between 1 (highly active) and 6 (low activity). By
use of a six-dimensional output layer, the activity is binary-coded
whereby each layer refers to one activity class.
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Different sizes of the networks were tested using different data
sets. The clustering ability was evaluated by the same quality criteria
as described in the next paragraph. It turned out that a size of 6×
15 × n was the best, wheren is the dimension of the input vector.
Therefore, this size was used throughout the study. The topology
of both ANNs was toroidal. To allow a direct comparison of all
experiments, the same training parameters40 were used.

Search for Good Clustering Properties.Kohonen networks
were trained with each data set. The resulting output maps were
evaluated according to their clustering ability. At first, a visual
evaluation of the output maps was performed. Subsequently, the
clustering for each neuron was calculated. Clustering was defined
as correct when the same inhibitory activity dominated in neighbor-
ing neurons. If other activities predominate the neighborhood, the
neuron is isolated and the clustering of this neuron was wrong. If
there were no preponderance of any activity, the clustering is
defined as drawn. Occupancy and the number of conflicts were
further quality criteria. Thus, a low occupancy, indicated by many
empty neurons, implies missing data. Conflicts occur when
molecules with different inhibitory activity occur within the same
neuron. It must be pointed out that neurons including SLs with
neighboring activity classes were not regarded as conflicts.
Considering that all SLs with activities between>10 and 20µM
fall in the activity class of “20µM” and between>5 and 10µM
in the activity class of “10µM”, the activity of SLs with neighboring
activity classes (e.g., 10 and 20µM) can have a more similar activity
than two SLs within the same activity class. In an analogous manner
it was decided whether the predicted class of an SL was correct or
not in the validation process.

Validation. The best model obtained by evaluation, selection,
and combination of RDF, L-RDF, and AC-descriptors was validated
by using internal and external validation models. Both models use
CPGNN with a six-dimensional output layer (Figure 9).

For the internal validation, 10-fold cross-validation (CV) was
used.41 The original data set was divided by random splitting into
10 subsets. A model was built based on nine subsets using the
remaining set as test set. To eliminate possible initializing effects,
19 random seeds were used to initialize the CPGNN. The procedure
was repeated 10 times until each subset had been used as a test
set. Then a new splitting was performed and the whole procedure
was repeated. Altogether, 19 random splittings were performed.
This number is independent of the 19 random seeds. Consequently,
3610 (10× 19× 19) CPGNN simulations using 6× 15 rectangular
topology were the basis for one 10-fold CV.

Furthermore, we tested the best model using the external test
set of 14 SLs, which was not used before, on 19 CPGNNs trained
with the entire data set of 103 SLs. Each CPGNN was initialized
by one random seed.
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